If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18t=45t^2
We move all terms to the left:
18t-(45t^2)=0
determiningTheFunctionDomain -45t^2+18t=0
a = -45; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·(-45)·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*-45}=\frac{-36}{-90} =2/5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*-45}=\frac{0}{-90} =0 $
| b+5=3b–9 | | 3b–9=b+5 | | 15(y-4)-2(y-2)=-5(y+6) | | 5z+49=3z-49 | | 5z+49=3z+49 | | 5b=6b-17 | | 18u+2=14u+18 | | 19b=13b+12 | | 12c+5=14c-9 | | 9a+7=13a-5 | | 5x-2+5x-1=30/5 | | 3^(x+1)=6 | | 3^x+1=6 | | (X-2)2(x-1)2=x2 | | (2+3)+4^2x(5−3)= | | 1^3-9/2^2-7x=0 | | 3-((5x-1)/10)=((x-1)/5)-((x-3)/2) | | X^3-9/2^2-7x=0 | | 0=4-9y^2 | | 9+9=-3(7x-6) | | 8x-1.2=`7x-14.7 | | 32=6x | | 3(4x+9)=-42+21 | | 3x+24=7x+32 | | 5x=27.50 | | 8/2y-14=-6 | | 17.5+4x=-6.5(3x6) | | 4r+9/4r+14=5r-3/4+1-3 | | 7x-1.2=3x-4.5 | | -5x-1.4=4x+58 | | x^2+x-1458=0 | | 2x+5-3=5-6x+7 |